Cylinder Deactivation System Overview

May 13 2016
A Brief History of Jacobs, the original compression release retarder manufacturer…

• Roots go back to a pioneer of the diesel engine and inventor of the “Jake Brake”: Clessie L Cummins

• Cummins (pictured below with his famous Indiana truck) designed, and later tested his compression release engine brake concepts, which were later to be made by Jacobs Manufacturing.
 – Leading producer of drill chucks since 1903
 – Engine brake patent rights bought in 1959 for diversification

• Jacobs became part of Danaher in 1986
Jacobs Vehicle Systems is a worldwide provider of engine brakes and valve train products.

- Headquarters, main Manufacturing & Engineering in Bloomfield, Connecticut, USA
- Manufacturing & Application Engineering in Suzhou, China
- Global Offices
 - Beijing, China
 - Paris, France
 - Pune, India
 - Tokyo, Japan
 - Seoul, Korea
Engineered by Jacobs. Driving Value Across the Globe.
The JVS Design & Analysis group consist of approximately 15 people with various specialties in design, valve train kinematics, hydraulics and engine performance.

Collocated group experienced with a variety of tools and methodologies:

- **CAD/CAE**
 - 3D modeling using Pro-Engineer/Creo
 - Kinematic and dynamic modeling using Pro/Mechanism MDX
- **FEA and CFD**
 - Structural, thermal, and electromechanical analysis using ANSYS & Creo
 - Pro/Mechanica also used concurrently in design
- **Hydraulic/Kinematic Analysis**
 - MATLAB Simulink using a proprietary hydraulic block library
- **GT-Suite**
- **AMESim**
- **Engine Performance Analysis and Cam design**
 - GT-Power used for both combustion simulation and engine retarding
 - Cam design using in-house code
The JVS Engineering Laboratory

- 2,000 m² Engineering R&D Laboratory
- Over $6 M in Capital Invested Over Last 15 Years
- 70+ different types of Diesel Engines have been tested

Facility
- 2 Double-ended Motoring Dynamometers (900hp)
- 8 engine durability test cells
- 3 Special test cells
- MTS room with 8 test frames
- Fatigue Room with 5 Mechanical fatigue testers
- Flex Room with 4 spring testers

Computerized Data Acquisition System
- High Speed Data Acquisition
- 45 Analog Channels up to 100 kHz sampling rate
- 360 or 1440 point/rev encoders

Low Speed Data Acquisition (A&D Technology - ADAPT)
- 96 Channel Engine Condition Monitor

Staff
- Engineering Laboratory Manager
- Test Engineer
- 7 Engineering Technicians
Current Product Portfolio

Technologies

Developed Technologies

<table>
<thead>
<tr>
<th>Exhaust Brake & After-treatment Management</th>
<th>Bleeder Brake</th>
<th>Compression Release Brake</th>
<th>Positive Power Systems</th>
<th>IEGR</th>
<th>Lost Motion VVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Orifice</td>
<td>Integrated (full/partial cycle)</td>
<td>Bolt On</td>
<td>Integrated</td>
<td>IEGR & Braking</td>
<td>Emissions Reductions using Jacobs IEGR™</td>
</tr>
<tr>
<td>Constant Pressure</td>
<td>Common Rail</td>
<td></td>
<td>Lost Motion</td>
<td></td>
<td>Emissions Reductions using Jacobs IEGR™</td>
</tr>
</tbody>
</table>

Technologies in development

<table>
<thead>
<tr>
<th>High Power Density (HPD) brake</th>
<th>Lashless Systems</th>
<th>Decompression Rocker Stop Device (RSD)</th>
<th>Cylinder Deactivation</th>
<th>2-Position VVA</th>
<th>Automated "Jake Shifting"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Image of various mechanical components and diagrams representing the technologies.
JVS recently developed an advanced braking system (HPD) that uses cylinder deactivation to achieve high braking power.

The Cylinder Deactivation system can be configured in a bridge system for OHC engines or pushtube system for CIB engines.

System has been developed using JVS engine brake design practices for durability and reliability.

Key Benefits:

- Advanced Braking - HPD
- Fuel economy improvement at light or part load operating conditions
- Aftertreatment thermal management
Collapsing Valve Bridge for OHC engines

Collapsing Pushrod for CIB engines is also available
MaxxForce 13 Engine

- Navistar Development Engine (B783 / B718 model)
 - Cylinder 1, 2, 3 fueling – Cylinder 4, 5, 6 deactivated
- HPD 2 system being used
 - Brakes deactivated so Cylinder deactivation bridges can be activated
Smooth engine operation with 3 cylinders deactivated, and smooth transitions.
Collapsing Pushrod System

Inline 6 cylinder engine
4 valve/cylinder with CIB
Independent rocker assemblies

Collapsing Pushrods: Intake and Exhaust

Solenoid Activation: Cylinders 1,2,3 or 4,5,6
Project: After treatment Thermal Management (ATM)
 – Part 1: *Cylinder Deactivation*

Objectives:

- Explore benefits of Cylinder Deactivation
 - Research indicates it is the most effective method of ATM
 - Can HPD system be adapted to provide cost effective independent 3 cylinder deactivation
 - How does deactivation impact steady state and HD FTP cycle exhaust temperatures
Experimental Program Result: Cylinder Deactivation

SwRI Study Reference:
Southwest Research Institute
Clean Diesel Program
Year 4 Report Jun-22-23, 2011
Shown on a CAT C-15 engine,
At 30% load, increase from
~640°F to ~1000°F (+56%) In 3 cylinder deactivation

Smooth engine operation with good temperature increase, but 40% less airflow
Impact of cylinder deactivation on active diesel particulate filter regeneration at highway cruise conditions

Xueting Lu\(^1\), Chuan Ding\(^2\), Aswin K. Ramesh\(^1\), Gregory M. Shaver\(^1\), Eric Holloway\(^1\), James McCarthy Jr.\(^3\), Michael Ruth\(^4\), Edward Koeberlein\(^1\) and Douglas Nielsen\(^5\)

\(^1\) Ray W. Herrick Laboratories, Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA; \(^2\) The Mathworks, Boston, MA, USA; \(^3\) Velserin Engineering, Easton, Marshall, MI, USA; \(^4\) Cummins Technical Center, Columbus, IN, USA.

Primary
1. The largest engine outlet temperature achievable during six-cylinder operation is 420°C, achieved with late SOI resulting in a 22% increase in fuel consumption (compared to the most efficient six-cylinder operating condition).
2. Deactivation of valve motions and fuel injection in two (of six) cylinders enables engine outlet temperatures of up to 520°C as a result of reduced air-to-fuel ratio.
3. Cylinder deactivation increases the rate at which the DPF will heat-up.
4. Per above, cylinder deactivation can be used to generate the 500–600°C diesel particulate filter-inlet temperatures required for particulate matter regeneration with oxygen without the need for a fuel doser, diesel oxidation catalyst, or burner.

FIGURE 6 Normalized exhaust gas-to-DPF heat transfer rate comparison – higher fuel consumption modes.
Steady-state results

- Cylinder deactivation provides significant increase in exhaust temperature at low load conditions
- Enables SCR NOx conversion and DPF regen at low load operation
• Modify first 200 sec of HD FTP cycle to run on JVS dyno
• Cylinder deactivation of 3 cylinders increases exhaust temperature 40°C during first 200 sec of FTP cycle
 – Non-optimized calibration
 – JVS dyno has limited capability, simulated FTP cycle
• Predictive cruise control allows the vehicle to coast based on topographical data
• Cylinder deactivation provides 25-30% reduction in parasitic power to drive engine preserving vehicle inertia for longer
Test Data under varying load

100NM
- 6 cylinder
- 3 cylinder

200NM

300NM
650 RPM – 91°C Oil – Turn on Time is 100 ms to the first missing event.
650 RPM – 91°C Oil – Turn OFF Time is 47 ms to the first missing event. Less than 1 cam cycle to re-lock.
HPD Validation Status

• HPD1 R&D program completed
• Design, Development, and Validation of HPD2 & 1.5 Stroke production ready system on multiple engines completed:
 • 200 hours of performance dyno work complete
 • 600 Hours of endurance testing complete
 • 500+ hours of head rig testing complete
 • 70,000 cycles of head rig activation complete
 • 20MM cycles of accelerated fatigue testing complete
 • Implementation Readiness Vehicle demonstration in Colorado with 200 miles completed at Eisenhower tunnel (7% grade, 120K lbs completed)
• Technology transitioned from R&D to Production Intent ready
 • 2 HPD Production intent development programs in progress
 • Daimler HPD Actros open Demonstration 4/2016
 • Multiple cylinder deactivation only production intent programs in process
Summary of Demonstrated Benefits

- Base HPD design allows for cost effective cylinder deactivation
 - Only need provision for separate hydraulic circuits
 - Smooth engine operation with 3 cylinders deactivated
- Higher exhaust temperature for SCR efficiency
 - Able to maintain higher exhaust temperature for more efficient SCR operation at partial loading (<40% load)
 - Quicker light-off time for SCR
 - Less use of fuel during warmup
- Partial load fuel efficiency
 - Testing indicates slight improvement at low load, no improvement at higher load.
- Value proposition
 - Future regulations with lower requirements?
 - Evaluate customer value for emissions – fewer precious metals in SCR, less urea use, compliance to new regulations, etc.
Hilko Schmitt, Country Manager for Europe
 – Email: hschmitt@jakebrake.com

Gabe Roberts, Development Manager Engineering
 – Email: groberts@jakebrake.com

Mailing address:

Jacobs Vehicle Systems
22 East Dudley Town Road
Bloomfield
CT 06002-1002
USA

www.jacobsvehiclesystems.com